Highway Rehabilitation Integrating Pavement, Construction, and Traffic

CA4PRS Software V1.0

(Construction Analysis for Pavement Rehabilitation Strategies)

April 27, 2004

Michael Samadian: Caltrans-DRI E.B. Lee: UC Berkeley-PPRC John Harvey: UC Davis-PPRC

CA4PRS V1 0

CA4PRS Agenda

- CA4PRS Development
- CA4PRS Analysis Process
- CA4PRS Modeling
- CA4PRS Pilot Projects
- CA4PRS Outreach Efforts
- Discussion

CA4PRS Development

CAAPRS V1 0

3

Why Was CA4PRS Developed?

- To quickly calculate construction productivity for Long-Life Pavement Rehabilitation Strategies (LLPRS) closures
- To identify the most important variables constraining productivity in extended closures (longer than 7-10 hr nighttime closures)
- To provide quantitative comparison of duration of alternative closure strategies for integration with planning, traffic, and pavement analyses

CA4PRS V1.0

Integration Need for Long-life Pavement Rehabilitation

- Balance Conflicting Objectives: <u>Long-life Design</u> with Fast Construction and <u>Minimum Traffic Delay</u>
- Pavement Design
 - > Structural sections to meet design life
 - > Faster materials
 - > Reduce thickness by increasing construction quality
- Construction Logistics
 - > Fast-track construction, around the clock operations
 - Contracting and Project delivery: A+B+C+I/D+PF
 - > Planning of Logistics, Resources, and Site Access
- Traffic Operations
 - > Road user cost evaluation and congestion mitigation plan
 - > Work-zone Information Systems and public outreach

CA4PRS V1 0

_

CA4PRS Capability for LLPRS Projects

- Models Accelerated Rehabilitation Process
- Analyze a maximum distance of rehabilitation
- Estimate closure numbers and project duration
- Decision-making tool for LLPRS projects
 - > Evaluate "What-if" rehabilitation strategies
 - > Develop Plans: Design/Construction/Traffic
 - Check Construction Staging: Resident Engineer
 - > Review Constructability of rehabilitation alternatives
- Establish Construction baseline for Integration of Pavement design, Construction logistics, and Traffic operations

CA4PRS V1.0

Funding Supports for CA4PRS Software Development

- 1999-2001: Caltrans PPRC (DRI) for Modeling & Prototype Spreadsheet (\$200,000)
- 2001-2002: FHWA Pooled-fund SPR-3(098) to code software (\$200,000)
 - > 4-State DOT(CA-MN-TX-WA) Pavement Technology Consortium (SPTC)
- 1999-2003: FHWA/ACPA/NAPA Funds for Case Studies (\$130,000)
- 2001-2003: PPRC (DRI) Funding for Case Studies and Associated Traffic Studies (\$200,000)
- 2002-2003: Fund for I-15 (D8) Implementation (\$200,000)

CAAPRS V1 (

7

CA4PRS Analysis Process

Step 1: CA4PRS V1.0 Main Inputs Create Alternative Scenarios

- Pavement Design
 - Rehabilitation Strategy Alternatives
 - Design (Cross-section) Alternatives
 - Materials Alternatives
- Traffic Control & Operations
 - Construction Widows (Closure timing)
 - Lane Closure Alternatives
- Construction Logistics and Constraints
 - Activity Lead-lag relationships
 - Construction Resources Logistics
 - Weather Condition (AC Cooling time)

Step 2: CA4PRS Constructability Schedule Analysis Outputs

CA4PRS Outputs

- Maximum Rehabilitation Production (lane-km)
- Total Number of Construction Closures
- Total Closure Durations
- Parameters Sensitivity

Constructability Analysis

- Compares Mix, Base type, and Widened Truck lane
- Evaluate Construction Schedule Benefits

CA4PRS <u>Outputs</u> => <u>Inputs</u> to Traffic Analysis

- CA4PRS 1.0 Run Traffic Analysis Separately
- Demand-Capacity Model (HCM) Spreadsheet Developed
- Version 2.0 will have the Embedded Traffic Module

CAAPPS V1 0

Step 3: Traffic Delay Analysis Road User Cost + Maximum Delay

Incorporated Traffic Analysis Tools

- Highway Capacity Manual (Spreadsheet)
- Macro Simulation: FREQ
- Microscopic Simulation: Paramics

Needed Additional Traffic Information

- Geometry: Nodes, Links, Lane numbers, Traffic Control
- Demand: Hourly & Daily Counts, Truck percentage
- Capacity: Construction Workzone Capacity
- Traffic Demand Control: Reduction (No-show + Detours)

Traffic Analysis Outputs

- Total Road User Cost (RUC)
- Maximum Delay per Closure
- Demand Sensitivity

Step 4: Economic Analysis

Total Cost = Agency + Road User Costs

- Comparison of Alternative Scenarios
 - Select the Most Economical Rehabilitation Scenarios
- Total Cost: Economic Analysis
 - Total cost = RUC + Agency cost
 - Agency Cost = Construction + Traffic Handling
 - Apply a Discount Factor for Road User Cost
- Other Qualitative Aspects
 - Pavement Life Expectancy: LCCA
 - Environmental Aspects
 - Public Perception
 - Impact on Local Business

CA4PRS V1 0

13

Step 5: Preferred Scenario Construction & Traffic Management Plans

- Construction Management Plan
 - Rehabilitation Scope and Process
 - CPM Schedule
 - Contingency Plan
 - Incentives and "A + B" (Cost/Schedule) Contract
- Traffic Management Plan
 - (Automatic) Workzone Information Systems
 - Detour Plans
 - Public Outreach: Demand Reduction
 - Lane Closure Charts: Lane, Ramp, Connector
- Implement Public Outreach

CA4PRS Modeling

4PRS V1 0

CA4PRS Pilot Projects

- I-10 Pomona (D7): FSHCC
- I-710 Long Beach (D7): AC
- I-15 Devore (D8):12-hour PCC

I-15 Devore Concrete Pavement Cross-section Changes • 200mm PCC with 100mm CTB => 300mm PCC with 150mm AC Base • Early-Age Strength Type III PCC (400 psi (f) in 12-H)

CONCRETE 205mm (8") CTB 102mm (4")			12-H Type III CONCRETE	290mm (11.5")	
	` '		AC Base	152mm (6")	
AB	305mm (12")	7	AB	152mm (6")	
SG			SG		
Old Section			New Section		
Removed	Retained		New PCC	New Base	

I-15 Devore: Construction Scenarios Evaluated

- Basic: Construction Windows
 - > 72-Hour Weekday Closures
 - > 55-Hour Weekend Closures
 - > 1 Roadbed Continuous Closures
 - > 10-Hour Night-time Closures
- Constructability Reviews
 - > Variation of 72-Hour Weekday Closures
 - > Mix Design: 12-Hour Type III vs. FSHCC
 - > Base Type: Lean-concrete vs. AC Base
 - > Widened truck lane vs. Tied-shoulder

34

AB

В

RETE

305m

205r

102r

111DDQ 1/1 0

I-15 Devore: Schedule Comparison CA4PRS Analysis Results

	Construction Scenario	Total Closures	Total Closure Hours	%
(2)	72-Hour Weekday	8	512	100%
(3)	55-Hour Weekend	10	550	110%
(1)	1 Roadbed Continuous	2	400	78%
(4)	10-Hour Night-time	220	2,200	430%

PS V4 0

I-15 Devore Selected the Most Economical Scenario: Schedule, Traffic Delay, Total Costs

	Construction	Schedule Comparison		Cost Comparison (\$M)			Max. Peak
	Scenario	Total	Closure	User	Agency	Total	Delay
		Closures	Hours	Delay	Cost	Cost	(Min)
$ \downarrow $	72-Hour Weekday Continuous	8	512	5.6	12.6	18.2	75
	55-Hour Weekend Continuous	10	550	14.2	15.1	29.3	195
	1 Roadbed Continuous	2	400	6.9	9.9	16.8	195
	10-Hour Night-time Closures	220	2,200	4.9	20.4	25.3	35

Lane Closure Review Committee Approved 72-Hour Weekday Closures (March 2003)

CA4PRS V1.

I-15 Devore Budget Reality Check Downsize Rehab. Scope with CA4PRS

- Result of the First Bids (2003 Fall)
 - > Estimate (\$12M) vs. Lowest (\$21M)
 - Mainly Due to High Traffic Control Costs
 - > Construction schedule (2004 Spring => Fall)
- Impact on Rehabilitation Scope
 - > Project Scope Reduction: Budget Constrained
 - > Only Outer truck-lane Reconstruction
 - > Inner truck-lane: Random Slab Replacement
- Revised Scenario Analysis
 - > Selected Full-closure compared to Half-closure
 - > CA4PRS Estimated 6 x 3- or 4-day Closures

CAMPS VI 0

CA4PRS Deployment Efforts

A4PRS V1.0 38

Candidate Projects for the CA4PRS Implementation

- Long-life Pavement Rehabilitation
- Accelerated Construction with Round-theclock Operations
- High-profile Pavement Rehabilitation with Heavy Traffic in Urban Environment
- Public Outreach Needed Project
- Project Size: Minimum \$X Millions
- Cycle: Planning => Design => Construction
- Lessons Learned Data: during construction

Who Uses CA4PRS?

- Training Workshops: 4-state Fund
 - > Caltrans Materials Academy: 4-hour class (D8) 2003
 - > 4-DOT x 2 Workshops: 1-day class (D8/D7) 2003
 - > Training for In-state Trainers: 4-day (D3/HQ) 2004
- 4-State CA4PRS Experiences
 - > CA: I-10, I-710, and I-15
 - > MN (I-35), TX (Pegasus), WA (I-5)
- American Concrete Pavement Association (ACPA) distributes CA4PRS
- NAPA is Considering to distribute CA4PRS

CA4PRS V1 0

CA4PRS Outreach DRI and PPRC Efforts

- · In-house Outreach: DRI Website
 - Detail information available
 - > Software downloadable
- Public Outreach
 - Brochure and Poster
 - > TR News Articles
 - Reports and Journal papers
 - > ACPA & NAPA: Conferences, Magazines
- Training for Caltrans
 - **≻**Some training performed
 - ➤ Need to identify Caltrans users and transfer use to Caltrans

Recommended CA4PRS Training

- Recommend 2-day Hand-on Training Class
 - 10-15 Trainees per Class
 - Need Computer Lab Facility
 - Need Fund Supports
 - Technology Transfer Program
- Who Should be Recommend for Training
 - D3, D4, D6, D7, D8, D11, D12
 - Target: Design/Construction/Traffic Engineers
- Needs HQ Coordination
 - Present to District Division Chief Meetings
 - Introduction to District Level

CAAPRS V1 0

12

CA4PRS Enhancement and Upgrade (PPRC and 4-State Supports)

- V1.0 Traffic Analyses handled separately
 - > PRC Developed a HCM Spreadsheet
- V1.5-a: Userability & Interface Improvement
 - > Develop the Manual
 - > Improve Userability
- V1.5-b: Add more Rehabilitation Strategies
 - > Mill & fill AC Rehabilitation
 - > CRCP Rehabilitation
- V2.0: Traffic Analysis (Road User Cost)
 - Demand–Capacity Model (Highway Capacity Manual)
 - Economic analysis (RUC + Agency Cost)

44 44 AMPROVI 0

Discussion

CAAPRS V1 0

45

Needed HQ Support for CA4PRS Deployment

- Support for Training
 - > Budget required
 - > Introduction to Major Districts
- Implementation to District Level
- More Case Studies for Implementation
- Maintenance and Technical support
- Enhancement

44 44 A

CA4PRS Additional Information

CAAPPS VA 0

I-15 Devore: Traffic Analysis Models Integrated with CA4PRS

- Step 1: Demand-Capacity Model (HCM)
 - Road user cost: Compare all scenarios
 - > Select the most economical scenario: Total cost
 - Sensitivity for TMP (Demand reduction, CWZ capacity)
- Step 2: Macro Traffic Simulation (FREQ)
 - > Focus on the Selected Construction Scenario
 - > Baseline for Incentives/disincentives and A+B contract
 - > Develop lane closure charts
- Step 3: Microscopic Simulation (PARAMICS)
 - Blocking Freeway Connector: I-210 to I-15 NB
 - Truck restriction during peak hours through CWZ
 - Relocate the junction split location

